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Abstract

One of the major developments in computing in recent years has been the intro-

duction of a variety of parallel computers, and the development of algorithms that

effectively utilize their capabilities. Very little of this parallel algorithm development.

however, has been in numerical optimization. Nevertheless, significant opportunities

exist for the utilization of parallelism in optimization, especially on computers that

support independent concurrent processes. This paper first gives a very brief survey

of parallel architectures and general characteristics of parallel algorithms. Next. we

indicate what we see as the leading opportunities for the utilization of parallelism in

optimization. Then we survey the small amount of existing research in parallel optimi-

zation; most of this has been conducted at The Hatfield Polytechnic. Finally we discuss

some recently initiated research at the University of Colorado concerned with solving

optimization problems by parallel algorithms suitable for implementation on a local

area network of computers; we focus on a new parallel algorithm for global optimiza-/tion. /71 "F, .
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1. Introduction

Oric of the major developments in computing in recent years has been the intro-

duction of a variety of parallel computers, and the development of algorithms that

effectively utilize their capabilities. By parallel computer, informally we mean any

computer capable of performing two or more computations simultaneously or con-
currently. Algorithms that are designed to use simultaneous or concurrent operations

will be called "parallel algorithms". In contrast, we will call traditional computers that

are designed to execute one instruction at a time "sequential computers", and algo-

rithms designed for such computers "sequential algorithms".

The development of parallel computation is motivated by the same objectives as
most progress in computing :the desire to solve an ever-increasing range of problems,
and the desire to solve problems as quickly or cheaply as possible. In some cases, the

main goal of parallel computation is raw speed, enabling the solution of problems that
heretofore were too time-consuming to be solved in a reasonable amount of time, or
allowing the solution of problems within the time constraints of real-time systems. In

* other cases, the main goal of parallel computation is to solve problems more cheaply

than with sequential computers.

While in recent years there has been considerable development and implementa-
*tion of parallel numerical algorithms, very little of this activity has been in numerical
* optimization. (By numerical optimization we mean the wide category of problems

involving the minimization of a linear or nonlinear objective function, perhaps subject

to linear or nonlinear constraints. In this paper, we only consider problems in real, as
* opposed to discrete, variables. For a general description of numerical optimization

problems, see for example Gill, Murray, and Wright [1951] or Dennis and Schnabel
[1983].) Instead, parallel numerical computation has centered mainly on the solution of
partial differential equations, and associated areas such as numerical linear algebra.

The reasons for this are simple and clear. First, the most obvious candidates for high
* speed computation are large scale problems, and these arise far more commonly in
* the solution of differential equations than in optimization. Secondly, the parallel com-

puters that have been most widely available have been vector computers such as the
* Cray-i and Cyber-205, and as we will discuss, these are far better suited to solving par-
* tial differential equations and linear algebra problems than optimization problems.

There are many opportunities for the use of parallelism in optimnization, however,
and good reasons to take advantage of these opportunities. It is well known that many

* optimization problems are very expensive, for one or more of the following reasons
the size of the problem (number of variables and constraints) is large, the objective

* function or constraints are expensive to evaluate; many iterations or function
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evaluations are required to solve the problem; a large number of variations of the same

problem must be solved. Indeed, often optimization problems are not solved, or are

only "solved" in a very approximate manner, because the cost of solving them with

* existing sequential computers and algorithms is prohibitive or does not fit Within real-

time constraints. The availability of faster or cheaper solutions to optimization prob-

ierns is likely to cause a considerable increase in the number of optimization problems

that are formulated and solved.

The main purpose of this paper is to discuss the prospects for the application of

parallel computation to numerical optimization problems, and to survey the small

amount of research that has been conducted in this area. While a self-contained treat-

ment of this subject also would require a thorough discussion of parallel computer

architectures, it is not within the scope of this paper to discuss this subject in detail.

Therefore in Section 2 we provide a thumbnail sketch of the main types of parallel

* architectures, stressing those characteristics relevant to our discussion of parallel

optimization. Section 3 provides a brief overview of important general characteristics

of parallel algorithms and their relation to the types of architectures discussed in Sec-

tion 2. Together, Sections 2 and 3 provide a minimal background in parallel computa-

tion; two excellent and thorough references on this subject are the books by Hockney

and Jesshope [1981] and Hwang and Briggs [1954].

Sections 4-7 are concerned with parallel optimization. In Section 4 we summarize

what we see as the main opportunities for the utilization of parallelism in optimization.

Section 5 surveys the small amount of research that has been conducted to date in

parallel optimization; much of this work has been conducted at The Hatfield Polytech-

nic. We and our colleagues at the University of Colorado have recently begun a large

project in distributed computation that includes a significant component in parallel

optimization; we discuss this work in Section 6. Section 7 contains some concluding

remarks on the future of parallel optimization.

2. Brief overview of parallel computer architectures

The development of parallel computer architectures and parallel algorithms are

concurrent activities, each motivated partially by the capabilities and needs of the

other. This paper mainly discusses parallel algorithms suitable for several broad

* classes of parallel computer architectures. In this section we provide a minimal

description of these classes of parallel computers. Parallel computer architectures
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are discussed in many research papers and several books; especially recommended

are the books by Hockney and Jesshope [19811 (for pipeline and processor array (SIMI)

computers), Hwang and Briggs [1984] (pipeline, processor array, and multiprocessor

(MIMD) computers), and Lampson, Paul, and Siegert [1981] (distributed systems).

The four types of parallel architectures we will refer to are pipeline computers

(specifically its subclass, vector computers), processor arrays (SIMD computers), mul-

tiprocessors (MIMD computers), and local area networks of computers. The terms SIMD

and MIMD are from the well-known taxonomy by Flynn [1966] and are explained below;

Flynn's taxonomy is not adequate, however, to differentiate the four classes mentioned

above.

Pipeline / vector computers

Pipeline computers are machines that overlap computations by subdividing and

interleaving them in assembly line fashion. That is, roughly speaking, computer

instructions are subdivided into m portions, and the pipeline machine executes part I

of instruction k. part 2 of instruction k+1, ..., and part m of instruction of instruction

k+m-1 simultaneously. Vector computers are a subclass of pipeline machines that use
this technique to rapidly compute arithmetic operations on vectors. For example, by

dividing the addition instruction into several (typically 6-10) subparts, a vector

machine can perform the vector instruction

z(i) = z(i) + y (). i = 1. • • - .n

rapidly by interleaving the successive additions. Vector computers are intended to

perform the above operation, as well as the componentwise subtraction and multiplica-
tion of vectors, and the "saxpy" operation

z(i) = a * x(i) + y(i), i = 1. n

rapidly as long as n is moderately large. Thus they are best suited to large scale prob-

lems where these vector computations are dominant, such as solving large systems of

linear equations and many algorithms for solving systems of partial differential equa-

tions. The primary vector computers in use today include the Cray-i and Cyber-205.

The designs of these machines differ in important ways that effect, for example, the

length (n) at which vector processing becomes efficient, but these considerations are

beyond the scope of this paper.

Processor arrays (S-lD computers)

Processor arrays are computers capable of executing a given instruction simul-

taneously on multiple data. Hence in Flynn's taxonomy they are referred to as "single

4 .•.. o O .oO ° " o . . ' o ' oo .oo•.. " . o . ' " . ' -. . ° .,.~..oQ,. . .. ~ ° . .r% ..o
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instruction multiple data" (SIMD) computers. A processor array thus can execute a

given program segment simultaneously (irs 'lockstep") on multiple data sets so long as

the program segment contains no data dependent branches. Processor arrays typi-

cally consist of hundreds -)r thousands of processing elements, each with a small

amount of local memory, connected to a single control processor from which instruc-

tions are issued. Usually an interconnection network permits data to be exchanged

between various processing elements; sometimes data is shared between neighboring

* processors. Examples of processor arrays are the llliac-IV, the Burroughs Scientific

* Processor, the Goodyear Massively Parallel Processor, and the ICL Distributed Array

* Processor (DAP) of Queen Mary College. London.

Miultiprocessors (MJMD computers)

Multiprocessors are computers capable of executing multiple instructions on mul-

tiple data independently and concurrently. Hence in Flynn's taxonomy they are

referred to as "multiple instruction multiple data" (MJMD) computers. Multiprocessors

thus are versatile parallel computers that can be used to concurrently perform similar

or dissimilar tasks. Typically, multiprocessors consist of a small number (2-50) of pro-

cessors. usually with their own local memory. which share access to common memory

* modules and are controlled by a single operating system. Several multiprocessors

have been developed in experimental environments, including the C.mmp and Cmn* of

* Carnegie Mellon University. the NEPTUNE of Loughborough University. the EMPRESS of

ETH Zurich. and the Erlangen General Purpose Array. Commercially available mul-

tiprocessors include the Denelcor Heterogeneous Element Processor (HEP) and the

Cray X-MP. ( The HEP achieves MIMD performance through the use of multiple pipe-

lined functional units.)

Local area networks of computers

Local area networks of computers are multiple computers, within fairly close phy-

sical proximity, connected by a high speed commnunication network. While such net-

works usually are not primarily intended for parallel computation, they may be used

for parallel computation by distributing various portions of a concurrent algorithm

among various computers on the network. (Considerable operating systems support is

required to make this convenient.) Thus local area networks of computers can be used

to achieve concurrent independent processing similar to that available on a multipro-

cessor, but communication between processors is substantially slower than between

multiple processors on a single computer. The use of local area networks for con-

current computation is currently being explored in various university and industrial

* research projects; projects considering the use of such networks for concurrent



iunierical coinputabon incl ude the Crystal project of the University ol %isconsin, and

the ENCOMP project of the University of Colorado that is discussed in Section 6.

The above list of paradei computer architecture categories is sufficient for the

purposes of this paper, hut it,. i, by r means ex.iv.. Arn',e: irnportant category

'f pa:-a U,, machines for numerical computation are "nulti-rmi'reprocessors", comput-

ers consisting of substantial numbers of simple processing elements. These may be

)cofigured as SIMD or MIMD computers and thus could also bt con:;idered as further
"- ex ',e.; of processor arrays or multiprocessors. Examples include the NASA Langley

fini.e element machine, the University of Texas reconfigurabic array processor, and

the University of Maryland ZMOB. Additional parallel architectures include "data-tlow

machines" and "systolic arrays"; machines of this type are just beginning to appear in

pra c-ice and have hardly been used for numerical computation.

3. General characteristics of parallel algorithms

Before discussing parallel optimization algorithms, it is helpful to mention some

general characteristics of parallel algorithms, and their relation to the classes of paral-

.lel computers discussed in the previous section. In this section we briefly discuss five

attributes that are emerging as important characteristics of parallel algorithms in gen-

eral and parallel optimization algorithms in particular. These attributes are : the level

of parallelism; communication requirements; uniformity of operations; generation of

processes; and control of processes. We also discuss how the suitability of various

p-rallel architectures to a particular parallel algorithm depends on these characteris-

-9 tics. The attributes we consider constitute a primitive taxonomy of parallel atgo-

rithms, something now just starting to emerge. Indeed, this section draws upon the

,.deas discussed at the Taxonomy of Parallel Algorithms Workshop held in Santa Fe in

19933, especially the paper by Siegel [1983]. An interesting discussion of characteris-

tics of parallel algorithms for multiprocessors is given in Kung [1976].

To aid our considerations, it is helpful to consider a simple optimization task that
i-i very conducive to parallelism, the calculation of a finite difference gradient. That is,

given a function f (x) of a vector x of n variables, approximate Vf at a specific point z

by g, where

....
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9i (f (x +N~tei) -f (z )) /h , i-1..n.

" Here e, is the i1h unit vector and h, is an appropriate stepsize. The most obvious way

* to parallelize this calculation is to have various processors concurrently compute vari-
ous components of g. Another alternative is to parall~lize each computation of f (z) in

sorrie manner. Now we will relate these possibilities to the attributes of parallel algo-

rithms given above.

The level of parallelism refers to the size and complexity of the portions of the

algorithm that are executed concurrently (or alternatively, the position of the con-

current segments in a top down description of the algorithm). In a high-level parallel

algorithm, major portions of the algorithm are separated and executed concurrently.
In a low-level parallel algorithm, individual instructions or small groups of instructions

are executed concurrently. For example, the first parallel finite difference gradient
algorithm mentioned above, distributing the calculation of various components of g to
various processors, is a high-level subdivision of this algorithm. Such a subdivision is

clearly well suited to a multiprocessor. It would be suited to a processor array only if

the calculation of f(z) contained no branches dependent upon X. A vector computer
-. would not be appropriate for this calculation. In general, high-level parallel algorithms

-are best suited to multiprocessors, and may also be suited to local area networks of

computers if relatively little inter-processor communication is required. Returning to

the finite difference example, suppose the calculation of f (z) consists mainly of large
scale matrix-vector operations. An algorithm that calculates the components of g
sequentially but vectorizes these portions of each calculation of f (x) makes a low-level

parallelization of the algorithm. As this example suggests, vector computers are best

suited to low-level parallelism.

Communication requirements refer to the amount of data that must be shared

between concurrent processes, as well as the dependence of the execution of some
processes upon the receipt of information from other processes. In the finite
difference example, processes computing various components of g would not have to

communicate with each other at all, but presumably would pass their value of gi back
to a master process. In contrast, a Gaussian elimination algorithm where each proces-
sor holds one row of the matrix will require considerable communication between pro-
cessors. In general, multiprocessors are usually well suited to parallel algorithms with

high communication requirements, while networks of computers are only suited to

algorithms with low communication requirements. Processor arrays often are well
suited to fairly high communication requirements, especially between nearby process-

ing elements.

:_ -' - - . • .. ,. .. - .,.. . • ., .- - . " . . . • - ' , . • .. ",* -. . ,. . , - , . .. .
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Uniformity of operations refers to whether identical or different operations are

performed in pardllel. Clearly, vector computers require the highest uniformity, multi-

plc applications of the same arithmetic operation to vectors of data, while processor

arrays require the next highest uniformity, execution of the same sequence of instruc-

tbons to multiple data in lockstep. Only multiprocessors and networks of computers

can perform different instructions concurrently.

By generation of processes we refer to the determination of when and where

processes are generated. Parallel algorithms may generate processes statically,

meaning that the schedule for generating processes is known before execution of the

program begins, or they may generate processes dynamically, meaning that the

number and distribution of processes is determined during execution and usually

varies a-, the program progresses. Most of the algorithms discussed in Section 5 gen-

crate processes statically, while the algorithm discussed in Section 6 generate

* processes dynamically.

Control of pr esses refers to the dependence of the execution of processes upon

the progress of other processes. Parallel algorithms that require the start of some

processes to wait for the completion of other processes are called synchronous algo-

rithms, algorithms without this requirement are called asynchronous algorithms.

* Clearly, algorithms that run on processor arrays must be highly synchronous. Mul-

* tiprocessors and local area networks are used for both synchronous and asynchronous

algorithms, and examples of both types of optimization algorithms are given in this

paper. Asynchronous algorithms usually are more difficult to design than synchronous
algorithms, but often offer the greatest chance of near-optimal usage of independent

* multiple processors.

Finally, we need to briefly discuss how one measures the performance of algo-

rithms on parallel computers. For vector computers, performance usually is measured

in the average number of floating point operations performed per second. For the

remaining parallel architectures, the issue is much less clear cut. Traditional sequen-

tial measures such as arithmetic complexity, number of iterations, and number of

* function evaluations, often are not appropriate for assessing parallel algorithms.

Instead, one often wants some measure of how fully the parallel algorithm utilizes the

computational power )f the parallel computer, and how much advantage is gained over

sequential algorithms. This measure will be influenced not only by the number of arith-

metic operations required, but also by delays caused by synchronization, communica-

tion, and contention for shared data. The term most often used to characterize this

measure of performance is "speedup"'; however, no uniform definition of speedup

exists. Speedup often is defined as the time required to solve a problem on a parallel

machine using a given p-processor algorithm divided by the time to solve the same



8

L problem on the same machine using the best I-processor algorithm; in this case, the

speedu should he between 1 and p. Sometimes, however, speedup is defined as thu

tUie to solve a problem by a given parallel algorithm on a given parallel rriachinu

divided by the time to solve Lhe same problem by a sequential algorithm on a sequen-

tial machine; in this case, wider variation is possible. The results mentinnel in Section

5 use both definitions.

4. Opportunities for parallelism in optimization

The primary objective of parallel computation is to solve expensive problems more

quickly or more cheaply. Since many optimization problems are expensive to solve, it

is worthwhile to consider whether parallel algorithms can aid in their solution. in this

section, we discuss four leading reasons why optimization problems are expensive, and
for each, summarize the opportunities for parallelism that are suggested and the types

of parallel architectures most likely to be suitable. The four causes of expense we con-

sider are : the size of the problem is large; the objective function or constraints are

expensive to evaluate; many iterations or function evaluations are required to solve the

problem- many variations of the problem must be solved. Another view of the oppor-

tunities for parallelism in optimization is presented by Dixon, Patel, and Ducksbury

[1983].

By large problems we mean problems where the number of variables or con-

straints is large, say greater than 100. The solution of such problems is likely to

require large scale linear algebra calculations at each iteration; in addition, the evalua-

tion of the objective function, constraints, and their derivatives may be expensive due
to the number of variable and constraints. Each of these areas presents opportunities

for parallelism. The most obvious use for parallelism for large problems is to speed the
linear alge- - calculations. Thus vector computers are excellent candidates. Note,

* however, that the vector algorithms required rarely are particular to optimization, and

have mainly been developed. Since it is also possible to construct efficient parallel

linear algebra algorithms for processor arrays and multiprocessors, these computers

are also candidates for large problems. If the evaluation of the functions or derivatives

*also involves large scale linear algebra calculations, vector computers or processor

arrays again are suggested, whereas a multiprocessor could be used to evaluate a

number of constraints concurrently. Yet another possibility is to evaluate or approxi-

mate derivative components concurrently multiprocessors or processor arrays are

I

" -. ' ' . .; - * - *. - .. "."" ; .", - .**'*** , .- *" .. . .. ...- ,' i - 1 " , ** .. *-".*
"'
.

" . : -l *. .. . .. " -
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most likely to be suitable. In summary, large scale optimization problems present

opportunities for virtually all parallel architectures, but many of the parallel computa-

tions they seeri to suggest are rot particular to optimization.

Problems where the objective function or constraints are expensive to evaluate

suggest. Iwo types of opportunities for parallelismn. The first, is to perform each indivi-

dual function evaluation by a parallel algorithm. For example, if the objective function

is itself a system of partial differential equations, a parallel partial differential equation

algorithm and a computer appropriate for this algorithm may be suggested. Again, the

development of this routine usually is outside the realm of optimization. The second

possibility is to perform multiple evaluations of the objective function concurrently.

'Mne most obvious use of concurrent function evaluations in optimization algorithms is

in concurrent finite difference derivative algorithms such as the one mentioned in the

previous section. The development of other effective optimization algorithms that util-

ize concurrent function evaluations is one of the fundamental challenges in the

development of parallel optimization algorithms; some possibilities are mentioned in

Sections 5 and 6. Concurrent function evaluation algorithms are best suited to mul-

tiprocessors or networks of computers, although processor arrays also can be used if

the function has no data dependent branches.

Optimization problems often require many iterations (and function evaluations)
when the starting guess is far from a minimizer and the objective function or con-
straints are highly nonlinear. Another important class of problems that usually require

many function evaluations are "global optimization" problems, where multiple local

minima exist and the lowest of these is required. In general, these problems present

two obvious opportunities for parallelism : concurrent function evaluations, or con-

current iterations. The use of concurrent iterations in the search for a single ("local")

minimizer is an interesting possibility that has hardly been explored. The use of con-

current function evaluations or iterations in solving the global optimization problems

appears to be one of the most fruitful areas for the application of parallelism to optimi-

zation, and is discussed in both Sections 5 and 6. Again, multiprocessors or networks

of computers are appropriate parallel architectures for these types of concurrent algo-

rithms, while processor arrays might sometimes be appropriate.

Finally, optimization applications are often expensive because many versions of
the same problem must be solved. A common example is a paramet.ric study where the

objective function depends not only on the variables x but also on some parameters y,

and the minimizer with respect to x is required for various values of y. Here the most

obvious use of parallelism is to run multiple problems concurrently; this should be very
effective and requires no new algorithm development. In some cases, each run

depends upon information from previous runs; in this case, it may be necessary to

* * *- . . * . _'
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speed individual runs instead. Techniques for this case are likely to be application

dependent., and we are not aware of any existing applications of parallelism to this

d ea.

There is one important case when the use of parallelism may be important even

though the optimization problem being solved is not particularly expensive. This is the

case of "real-Lime" problems that must be solved within an allotted time limit. Clearly,

the best ways to speed the solution of real-time problems may be application depen-

dent.. Since the predominant cost of most optimization algorithms is either linear alge-

bra, expense per function evaluation, or number of function evaluations and iterations,

however, the approaches indicated above for expensive problems should often be

appropriate for real-time problems as well.

5. Survey of parallel optimization research

In recent years a considerable amount of research activity has been devoted to

developing and testing parallel numerical algorithms. Very little of this activity, how-

ever, has been in numerical optimization. The reasons for this become clear if one

considers the opportunities for parallel optimization mentioned in the previous section

together with the availability of parallel computers so far. From the previous section,

it appears that most of the opportunities for parallelism in optimization involve

independent concurrent processes, and are therefore best implemented on multipro-

cessors or local area networks of computers, and sometimes may be implemented on

processor arrays. There does not appear to be much opportunity for the exploitation

of vector processing that is particular to optimization. The availability of parallel com-

puters up to this time has been the opposite of these needs, that is, gocd access to vec-

tor computers but very little availability of processor arrays, multiprocessors, or net-

works of computers. This is an important reason why parallel optimization has been

relatively slow to develop.

There has been a limited amount of work in parallel optimization, however, as well

as work in parallel linear algebra that is especially relevant to optimization. In this

section we survey this research. First we give references to some relevant parallel

-. linear algebra research, especially conjugate gradient methods for solving systems of

linear equations. The predominant research in parallel optimization that we are aware

of has been conducted by a group at The Hatfleld Polytechnic. We summarize their

research in parallel algorithms for four applications a modified Newton's method for

A . -- . * . - ... . .. .o. o . - , ,•.- . . -• . . . . - . . ,"." . . . . ," " -.
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unconstrained optimization. a nonlinear conjugate gradient method, global optimiza-

Lion, and nonlinear least squares. We conclude the section with references to a few

other research projects in parallel optimization.

Much of the research to date in parallel numerical computation has concerned the

solution of systems of linear equations. Algorithms have been developed for full,

sparse-, tridiagonal, and banded matrices. Most work has coricentrated on algorithrms

for vector computers but algorithms for processor arrays and multiprocessors have

," also been developed. Many algorithms are adaptations of the standard sequential algo-

rithms such as Gaussian elimination. QR factorization, and Cholesky decomposition,

some are more specially developed for parallel computation. Many of the implementa-

tions have achieved efficient speed or speedup. Some representative references

include : Heller [1978] and Sameh [1977] (surveys of algorithms), Duff [1983], Fong and

Jordan [1977]. Jordan [1979]. and Rodrigue [1982] (all mainly concerned with vector
computation), Hockney and Jesshope [1981] (vector computers and processor arrays),

and Dongarra and Hiromoto [1983], Kapur and Browne [1981], and Lord, Kowalik, and

Kumar [1980] (multiprocessors).

Of special interest to optimization are parallel algorithms for solving linear sys-

tems by conjugate gradient methods. Linear conjugate gradient algorithms consist

mainly of matrix-vector multiplications and inner products. so they lend themselves

nicely to vectorization or concurrent computation. Much of the interesting research

has concerned the effective use of preconditioners in these algorithms. Some refer-

ences are Adams [1983], Adams and Ortega [1982], Kowalik and Kumar [1982], and van

der Vorst [1982]. These techniques are of special interest to optimization because con-

jugate gradient algorithms for nonlinear optimization (see e.g. Gill, Murray, and Wright

[1981]) are closely related to the linear algorithm. One parallel nonlinear conjugate

gradient algorithm is described below.

A final parallel linear equations algorithm with applications to optimization is the

parallel relaxation algorithm implemented by Baudet [1978] on the C.mmp multipro-

cessor. Baudet achieved high speedup by implementing a "chaotic relaxation" algo-

rithm with asynchronous concurrent processes. An application of Baudet's approach

to networks of computers and nonlinear optimization is mentioned at the end of the

next section.

Turning to nonlinear optimization, most of the work on parallel algorithms that we
are aware of has been conducted by a group at The Hatfield Polytechnic led by L. Dixon.

Most of their research has been conducted on the ICL DAP. a processor array with 4096

bit serial processing elements that can compute in lockstep. Each processing element
has 16K bits of local storage. The processing elements are connected in a 64 x 64 grid

* with each processor having access to the four neighboring elements and their storage.

4%
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The DAP is connected to an ]CL 2980 computer. While we mentioned in Section 4 that

processor arrays are not as well suited to parallel numerical optimization as are mul-

tiprocessors. they are reasonably well suited to experimrental studies in parallel optimii-

zation. This is because any algorithm requiring parallel function evaluations can be

tested on a processor array as long as the test functions contain no data dependentL

* branches, a condition often satisfied by test (as opposed to real-world) objective func-

* tions. Processor arrays may not be used, however, to test algorithms that involve con-

* current execution of different program segments. For this reason, most of the algo-

* rithms tested by the Hatfield group involve concurrent function evaluation or parallel

linear algebra computations. A small amount of their work has been conducted on the

Loughborough NEPTUNE computer, a multiprocessor with four processors.

The parallel optimization research at Hatfield has concentrated on four types of

* algorithms, modified Newton methods for unconstrained optimization, nonlinear conju-

* gate gradient methods, global optimization methods, and methods tor nonlinear least

- squares. It is reported in a number of survey papers, including Dixon and Patel [19621,
Dixon, Patel, and Ducksbury [1983]. and Patel [1982a], as well as many papers men-

tioned below.

The parallel unconstrained optimization methods discussed in Dixon [1981] and

Patel [1982b] are adaptations to an processor array of a finite difference Newton's

method - line search algorithm. Parallelism is achieved in three ways :by computing

the function evaluations involved in calculating the finite difference gradient and Hes-

sian in parallel; by using a parallel algorithm to solve the system of linear equations

required to calculate the Newton step; and by conducting 1, 2. and 4 dimensional line

searches which evaluate the function at up to 4096 points simultaneously. (The four

possible search directions are the Newton direction, the steepest descent direction,

and the directions to the previous past two iterates.) In all of the test results reported

by the Hatfield group, the times required by the parallel algorithms on the DAP are

4 compared to the times required by a sequential algorithm on a faster sequential

machine (a DEC 1091). Since the relative speeds of the DAP and the sequential

machine that are given as a benchmark are highly variable, it is difficult to calibrate
the gains that are achieved. It is clear, however, that on test problems such as those
reported with n = 64. the parallel algorithm is substantially faster than the sequential

* Newton algorithm or a sequential variable metric method. This is largely because the
flnite difference calculations and the solution of linear equations dominate the comput-

* ing cost, and are done considerably faster by the parallel machine than by the sequen-
* tial machine. The intriguing idea of concurrent multiple dimension, multiple step
o length line searches is not shown to produce any great advantage; the computational

results show no clear cut advantage in going from one to two or tour dimensions, while

4%
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the data reported do not permit an assessment of the effect of multiple step lengths.

Experience in running parallel linear and nonlinear conjugate gradient algorithms

on the DAP is reported in Dixon, Ducksbury, and Singh [1982]. The algorithms are

designed specifically for finite element problems, with each processor handling one

finite element. For the linear problem, the matrix-vector products and inner products

that constitute the bulk of the algorithm are computed in parallel by having each pro-

cessor concurrently compute the contribution of its finite element to the desired

result. The nearest neighbor connections of the DAP are very helpful here. For the

nonlinear problem, the gradient is also computed in parallel by combining the contri-

bution of each finite element. Test results for both algorithms are reported for linear

* problems only; for problems with enough nodes to utilize most of the processors on the

* DAP, the parallel algorithm clearly is much faster than a sequential algorithm since up

to 4096 computations are performed concurrently during much of the parallel algo-

rithm. Neither preconditioning, nor the interesting question of how to handle problems

with more nodes than the number of processors, are addressed.

Parallel global optimization algorithms designed for the DAP and the NEPTUNE

multiprocessor are considered in Dixon and Patel [19811 and Ducksbury [1952]. As we

stated in Section 4, the global optimization problem is perhaps the most obvious candi-

date for parallel optimization, because the solution of these problems usually requires

many function evaluations, and because the problem does not appear to require as

* inherently sequential algorithms as the calculation of a single local minimizer.

Dixon, Patel, and Ducksbury invrestigate how a primitive global optimization algo-

rithm, the algorithm of Price [1981] that is largely intended for mini-computers, can

* be implemented on parallel computers. Price's algorithm consists of the random sam-

pling of f (x) at a number of points, followed by the repeated replacement of a high

* point by a new lower point generated by a reflection operation through some of the

current points. No derivative information or local minimization techniques are used.

The version developed by the Hatfield group for the DAP samples 3n groups of 4096

* points concurrently, resulting in 3n points at each processor; then it repeatedly gen-

* erates new points at each processor concurrently. The total number of function

evaluations required by the parallel algorithm on test problems is usually 10 to 100

times that required by the sequential algorithm, but since 4096 test function evalua-

tions are performed concurrently on the DAP, the parallel algorithm requires less time

than the sequential algorithm on the faster sequential machine, by factors of 3 to 68.

The multiprocessor algorithm is a different adaptation of Price's algorithm where the
ihprocessor, i = 0, . 3, repeatly attempts to replace the V14 worst remaining point

by reflection. The algorithm is asynchronous with the processors accessing a global

store of the sampled points. Speedups in the range 2 to 3.8 are reported when testing
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the four-processor algorithm against a similar one-processor algorithm on the NEP-

TUNE.

While the results achieved by the }1atfield group show considerable speedup of

Price's algorithm on processor arrays and multiprocessors, it must be acknowledged

that Price's algorithm is not a competitive global optimization algorithin for standard

sequential machines. For example, in tests by Rinnooy Kan and Timmer [1983], a more

sophisticated version of Price's algorithm still usually requires an order of magnitude

more function evaluations than a state-of-the-art stochastic method. Parallel global

optimization that use more sophisticated optimization techniques still need to be

developed. A brief discussion of a more sophisticated parallel global optimization algo-

rithm is included in Dixon and Patel [1982]; another alternative is presented in Section

6.

The final type of parallel optimization research reported by the Hatfield group is a

brief study by McKoewn [1979] of two-processor nonlinear least squares algorithms run

r* on an earlier, two-processor version of the NEPTUNE multiprocessor. Two techniques

are considered for achieving parallelism. The first is the obvious idea of evaluating

different portions of the sum of squares function concurrently. Clearly for a data fitting

. problem where each residual function requires a similar amount of time to evaluate,

this should lead to good speedup on a multiprocessor, and McKeown's computational

results support this contention. The second parallel algorithm tested is an interesting

asynchronous algorithm where one processor computes the search directions while the

. other does line searches using the latest available information. Test results showed

that the total number of function evaluations required may degrade very little (the

desired result) or significantly over the comparable sequential algorithm, depending on

seemingly unrelated factors, such as amount of input/output, that effect the timing.

Speedup information is not reported.

In summary, it should be noted that most of the parallel optimization algorithms

* developed by the Hatfield group are closely related to existing sequential optimization

algorithms. While these are important, in fact groundbreaking, contributions, it is our

. opinion that future developers of parallel optimization algorithms will also need to con-

sider new algorithmic approaches that are not necessarily best or even suitable for

sequential computation. This principle has already been demonstrated many times in
!'  the development of parallel algorithms; see for example the discussion of recurrences

and tridiagonal linear systems in Hockney and Jesshope [1981]. We believe that the

design of fundamentally parallel optimization algorithms offers many new and exciting

Spossibilities; hopefully the material in the rnext section provides an indication of

* approaches geared specifically to parallel computation.

,o . .

• .""" " • " . ''" ."7 " ."." " " .' ."" "• " "''. '. "'...'',. [. '',. 7. ." ". "." ," - . " " ". , ; "":" ,. .. , .7."



A few other projects related to parallel optimization have been reported. Stracter
[1973]. Straeter and Markos [ 1975]. Housos and Wing [ 1980], and van Laarhoven ( 19841

* have proposed parallel versions of a variety of unconstrained optimization algorithms.
* including variable metric and conjugate direction methods. Mohan [ 19821 has

developed a parallel traveling salesman algorithm and tested it on the Cmn*. Feijoo and
Meyer [1984] currently are testing parallel nonlinear network optimization algorithms
on the local area network of computers developed under the Crystal project at the
University of Wisconsin.

6. Parallel optimization at the University of Colorado

We and several colleagues at the University of Colorado have recently begun
research into the development of parallel optimization algorithms suitable for imple-
mentation on a local area network of computers. This research is part of a larger pro-
ject at the Computer Science Department of the University of Colorado., the ENCOMP
project, investigating the use of a local area network of computers for parallel compu-

* tation. In this section we first give a very brief description of the ENCOMP project.

Then we discuss some of the approaches to parallel optimization we are investigating,
* focusing on an approach to global optimization that is suitable to multiprocessors as

well as networks of computers.

The aimn of the ENCOMP project is to develop and test parallel numerical algo-
rithms designed specifically for a local area network of computers. This computing
environment is of interest for three main reasons. First, it is becoming increasingly
common in practice. Second. as will be indicated below, the areas of numerical compu-
tation we are interested in. such as optimization and VLSI design, lend themselves
naturally to solution by concurrent algorithms that require little inter-process corn-

* munication. Thus they are well suited to parallel solution on a local area network of
* computers, where the communication speed between processors is relatively slow corn-
* pared to the computing speed of each processor. Third, there now exist commercially

available operating systems that support inter-process communication, thereby ena-
bling one to readily develop and test concurrent programs on networks of computers.
In particular, we are using a network of Sun workstations and VAX computers with each
node running the Berkeley Unix 4.2 operating system, and the nodes connected on an
Ethernet, and we have been able to develop and run concurrent programs almost
immediately upon installation of this network. Naturally, additional support software is

4 q C



still desirable to make the development, debugging, testing, and evaluation of con-

current programs more convenient.

The main class of optimization problems we are considering share the characteris-

tic that they can solved by partitioning the original problem, often dynamically, into a

number of subproblems, and then solving each subproblem, with limited communica-

Lion required between the subproblems. In many cases this leads to a quite different

algorithm than has been considered for sequential computation. The foremost optimi-

zation problem we propose to solve in this manner is the global optimization problem,

minimize f : R"-R.

Other problems that can be approached in this way include determining the feasibility

of a system of constraints,

given DER' and ci : Rn- R, i=l, ,

determine whether there exists xED for which c1 (x) -5 0, i 1, • ,

the nonlinear mini-max problem,

minimize a
xED

subject to ci(x)!5a, i=1, ''m

and the global solution to a system of nonlinear equations.

The global optimization algorithm we are developing is most closely related to the

stochastic optimization method of Boender et al [1982, to our knowledge the most

efficient known sequential stochastic optimization method. Our algorithm basically

consists of adaptively partitioning the variable space into subregions likely to contain

one local minimizer each, and then simultaneously finding these local minimizers using

separate processors, recurring this procedure as necessary. Additional efficiency is

attained by the early termination of subregions where the function is high. Below we

give a high level, oversimplified description of the algorithm that is executed by each

process invoked by the concurrent algorithm. Variable and procedure names are itali-

cized and inter-process communication is in boldface.

Global ( Function, Subregion, Lowvest-anyuere-so-fdr (* shared variable ))

1. evaluate FPzsction at several points in Subregion;
throw away very high points and take a steepest descent step from thelii!Irest

( for initial (entire) region, this step can be executed in parallel,

• ,..,.. -.: .; -.', , .. . ". . .. ,, .. .. ... ,.. -.- .,, , . .. . ,.., ,,. , .- , ,..\ . ... _ . . .. , .. ., .,. ..
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and lowest-anywtohere so-far is initialized to the lowest function
value found *)

2. cluster points with the aim of forming one cluster for all points in the region
of attraction of each local minimizer;
partition Subreg 'on into smaller subregions containing these clusters

3. IF ( number of subregions identified at step 3 ) > 1
THEN (attempt to) create a process for each new subregion

( subsequent instantiations of i obal begin at step 4 )
4. Run a local minimization algorithm in Subregion for at most a predetermined

number of steps
5. IF ( lowest function value found in Subregion ) < Lowest-anywhere-so-far)

THEN broadcast this new value of Lowest-anywhere-so-far to all other
processes

5. IF (local minimizer found at step 4) THEN
perform steps 1-2
IF (number of clusters found) > I

THEN go to step 3
ELSE terminate this process

(* global minimizer in Subregion has been found *)
7. IF ( lowest function value found in Subregion) = Lowest-anywhere-so-far

THEN go to step 4
ELSE

(* try to determine whether this subregion can be discarded
because Funuction has high values throughout )

estimate a lower bound on Function in Subregion
(* may involve further sampling *)

IF (lower bound) < Lowest-anywhere-so-far
THEN go to step 4
ELSE terminate this process

The parallelism in this algorithm is at the highest level; each process is an embel-
lished local optimization algorithm. The communication requirements between

processes, namely initiating and terminating a small number of processes and broad-
casting and receiving values of the single shared variable lowest-anywhere-so-far, are
very small in comparison to the computational requirements of each process, since
each evaluation of Fnction typically takes many milliseconds or seconds. The "shared
variable" actually can be maintained by each process and updated asynchronously.
Thus the entire algorithm can be implemented as an asynchronous concurrent algo-
rithm on a loosely or tightly coupled multiprocessor or on a local area network of com-
puters.

The parallel global optimization algorithm contains several features which
represent significant departures from existing sequential algorithms, and will require
substantial research. While sequential algorithms such as Boender et al [1982] include
clustering, the clustering at step 2 is different in that it tries to locate convex regions,
and not just proximity as do most existing clustering algorithms. The partitioning
required at the end of step 2 may be accomplished by formulating the partitioning
problem as a linear program or by various heuristic approaches such as the percep-
tron algorithm, these approaches must be compared and new ones may be

:.Y

.- -.. .4 . -.. . ... .. . . . . .



I I ,| ! ,I . ! i. ,, ) ! , P _ 1-. ,, ! ., -. , . . • . ,-... -: -:' - - -- -- -

.

*
-- ] 18

investigated. Of course the partitioning problem may be infeasible, in which case the

clusters must be modified. Perhaps the most interesting aspect of the global optimiza-

tion algorithm is the lower bound required at step 7. This step is related in its objec-
Live to the termination step -)f existing sequential global optimization algorithms, but

better procedures should be possible because the objective function should often be

convex inside the subregion. One possible way to calculate a lower bound is to calcu-

late a convex function that interpolates or underestimates all the points sampled in

the subregion so far, and take the minimum of this underestimating function as the

lower bound.

We have not yet implemented the above parallel global optimization algorithm, so
we can only speculate on its efficiency. It would appear that on problems where a

sequential algorithm must identify even a handful of local minimizers before declaring

that it has found the global minimizer, the parallel algorithm has a good chance of

doing this work concurrently and hence achieving a speedup close to the number of
processors. In fact, even greater speedup over existing sequential algorithms may be
possible from the early termination of subregions, if this allows the parallel algorithm

to skip finding local minimizers that the sequential algorithm would find. Only experi-

mentation will show if these hopes are realized. Experimentation is also required to

determine whether the communication requirements are, in fact, insignificant in rela-
tion to the total amount of computation.

The feasibility of nonlinear constraints and nonlinear mini-max problems also lend

themselves nicely to concurrent solution techniques based on partitioning. First, both
problems are themselves global optimization problems, so it should be useful to parti-

tion the feasible region into subregions as discussed above. In addition, the constralnts

* may be partitioned into subsets. Combining these two types of partitioning leads to
interesting algorithmic possibilities. Consider for example the feasibility of constraints
problem with two constraints. Suppose we divide the region D into two subregions D1
and D2. and then determine whether each constraint is feasible in each subregion. If,

" for example, c I is infeasible in D 1 and C 2 is infeasible in D2, then the entire problem is

infeasible. If both constraints are feasible only in D 1, then the algorithm can restrict

its attention to this subregion. These types of approaches again seem to offer the pos-
* sibility of effective use of multiple processors with small interprocessor communication
.: requirements, but experimentation is required to determine whether this goal is

achieved.

Our experience in implementing and testing concurrent optimization algorithms

so far is very limited, because the Berkeley Unix 4.2 operating system which we require

to run concurrent algorithms on a network of computers has only been available for a

few months. So far we have shown the feasibility of using our local area network for

concurrent computing by implementing a finite difference gradient algorithm of the

type discussed in Section 3, and a version of the chaotic relaxation algorithm of Baudet

( 1978) for soiving linear systems. We plan next to develop and test a chaotic relaxation

method for solving systems of nonlinear equations. This is another natural parallel

.•.. -*
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opt.imization method, but it may require a higher rat, of int.er-procuss cornrniim.ihoiL

than Ow at aIgor)hirs diseussed ibove, *lmi hence be betLtr .',uiLel to rultojx'ocvssors

than to networks of computers.

7. Concluding remarks

The development of parallel algorithms for nonlinear optimization clearly is in its

infancy. Hopefully, the previous three sections have indicated that parallel optimiza-

tion is a fruitful area for future research, especially as multiprocessors and local area

networks of computers become available. We have already summarized, in Section 4,

the opportunities we see for parallelism in optimization, grouped according to the main

factors that make optimization problems expensive. We conclude by focusing on a few

of the main types of optimization problems that seem most conducive to paralleliza-

tion. Our discussion is related to that in Dixon, Patel, and Ducksbury [1983] and in

many other papers by the Hatfield group.

We have already stated that the global optimization problem may be the most

obvious candidate for significant gains from parallelism in optimization. The stochastic

methods discussed in Sections 5 and 6 are just two of a myriad of possibilities for paral-

lel global optimization. Many sequential approaches to solving global optimization

problems exist, including various types of stochastic algorithms (see e.g. Rinnooy Kan

and Timmer [1983] for further references), deterministic methods such as the tunnel-

ing algorithm of Levy et al [1981], and a large class of methods for constrained global

optimization problems with concave objective functions (see e.g. Rosen [1983]). All of

these approaches seem to suggest excellent possibilities for parallel algorithms suit-

able to multiprocessors, networks of computers, and in some cases, processor arrays.

While numerical optimization problems are not as inherently large scale as, say,

the solution of many differential equations problems, there do exist a number of impor-

tant optimization problems that are inherently large. These include semi-infitnite pro-

gramming problems, optimal control problems, and network optimization problems.

Many of the approaches to solving these problems, including conjugate gradient

methods, relaxation methods, branch and bound methods, and the partially separable

methods introduced recently by Griewank and Toint [1982], appear well suited to paral-

lelization. Vector computers may be advantageous in some of these cases.

For local (as opposed to global) optimization problems where function evaluation

is expensive, but the optimization problem itself is not too difficult to solve, the best
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approach may often be to parallelize the function evaluation itself. Barring this, the

most obvious utilization of parallelism is the concurrent calculation of components of

finite difference derivatives But there remain many other interesting possibilities.

mostly unexplored, for the utilization of concurrent function evaluations.

Real-time optimization problems occur in a variety of applications including on-

line process control. A far wider range of possibilities may be admissible for solving

real-time problems than for standard off-line problems, since sub-optimal use of com-

puting resources may be far more tolerable if it leads to satisfaction of a time bound.

The solution of real-time optimization problems by parallel algorithms is likely to be

application dependent, however.

The above list is by no means exhaustive. As in any new research area, the best

problems may not yet have been identified, and some of the best solutions almost cer-

tainly have not yet been developed. In fact, the above list falls somewhat into the trap

of suggesting parallel versions of sequential algorithms. We close by reiterating the

need to also look at fundamentally new algorithms specifically designed for parallel

computers.
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